平硫瑞 (Penthiopyrad) 農藥有效成分檢驗方法

一、農藥結構及物理化學性質:

普通名稱: 平硫瑞(CIPAC No.824)

化學名稱:(RS)-N-[2-(1,3-dimethylbutyl)-3-thienyl]-1-methyl-3-

(trifluoromethyl)pyrazole-4-carboxamide (IUPAC). N-[2-(1,3-

dimethylbutyl)-3-thienyl]-1-methyl-3-(trifluoromethyl)-1*H*-pyrazole-4-

carboxamide (CAS;183675-82-3).

化學結構:

$$F_3C$$
 O N CH_3 CH_3 CH_3

分子式:C₁₆H₂₀F₃N₃OS

分子量:359.4 理化性質:

外觀:白色粉末狀。

熔點:108.7℃。

蒸氣壓: 6.43 x 10⁻³ mPa (25℃)。

解離常數: pKa 10.0(弱鹼, 20~25°C)

溶解度:水1.38 mg/L (20~25 ℃, pH7)。丙酮 557 g/L、二氯甲烷 531 g/L、乙醇 235 g/L、乙酸乙酯 349 g/L、正庚烷 0.74 g/L、正己烷 0.75 g/L、甲

醇 402 g/L、甲苯 67 g/L、二甲苯 42.7 g/L (均為 20-25 °C)。

安定性:於pH4、7、9,50℃下穩定不水解。

水中光分解安定性:穩定

二、劑型:水懸劑 (SC)。

三、作用:殺菌劑。

四、分析方法:

- 1. 適用範圍:本方法適用於平硫瑞水懸劑中有效成分之定性及定量分析。
- 2. 檢驗方法:高效液相層析法 (High performance liquid chromatography, 簡稱 HPLC)。

2.1 裝置:

- 2.1.1 高效液相層析儀:
 - 2.1.1.1 檢出器: 紫外光檢出器 (Ultraviolet detector, 簡稱 UV)。
 - 2.1.1.2 層析管柱: 逆相層析管柱, 4.6 mm × 250 mm (ID × L), ZORBAX Eclipse XDB-C8, 5 μm, 或相關等級。
- 2.1.2 超音波振盪裝置 (頻率 40-50 KHz), 振盪器。

2.2 試藥:

- 2.2.1 参考物質:平硫瑞,純度經標定之分析級對照用參考物質。
- 2.2.2 內標準參考物質:4-甲基苯乙烯 (4-methylstyrene),純度經標定之分析級試藥。
- 2.2.3 氰甲烷 (Acetonitrile) 為分析級溶劑。
- 2.2.4 甲醇 (Methanol)為分析級溶劑。
- 2.2.5 去離子水(18.0 MΩ.cm 以上,經 0.22 μm 濾膜過濾)。

2.3 器具及材料:

2.3.1 定量瓶 10 mL、25 mL、50 mL、100 mL。

- 2.3.2 刻度吸管。
- 2.3.3 0.22 µm 親水性聚丙烯(Hydrophilic polypropylene)過濾膜。
- 2.4 貯存標準液 (Standard stock solution) 配製(STD A):

秤取約含平硫瑞 25±5 mg (記錄至 0.1 mg) 之已知純度分析級對照用參考物質,置於 25 mL 定量瓶中,加入 20 mL 氰甲烷,以超音波振盪至完全溶解後 (約 5 分鐘),回至室溫,以氰甲烷定容至刻度,為 1000 μg/mL 貯存標準液。

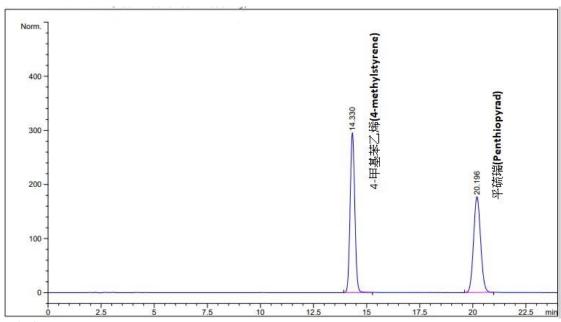
2.5 貯存內標準液 (Internal standard solution) 配製:

秤取約含 4-甲基苯乙烯 50±10 mg (記錄至 0.1 mg) 之已知純度分析級內標準參考物質,置於 100 mL 定量瓶中,加入氰甲烷 90 mL,以超音波振盪至完全溶解後 (約 5 分鐘),回至室溫,以氰甲烷定容至刻度,為 500 μg/mL 貯存內標準液。

2.6 標準檢量線 (Standard calibration curve) 製作(STD A-1~STD A-5):

取 $1.0 \times 2.0 \times 3.0 \times 4.0 \times 5.0$ mL 之 $1000~\mu g/mL$ 平硫瑞貯存標準液,分別置於 10~mL 定量瓶中,各加入 1.0~mL 之 $500~\mu g/mL$ 貯存內標準液,以氰甲烷稀釋定容 至刻度,使成含 $50~\mu g/mL$ 內標準參考物質之 $100 \times 200 \times 300 \times 400 \times 500~\mu g/mL$ 之平硫瑞操作標準液(Working standard solution)。各操作標準液以 $0.22~\mu m$ 親水性聚丙烯過濾膜過濾後,分別取 $10~\mu L$ 注入高效液相層析儀分析之,以其濃度為 x 軸、尖峰面積比為 y 軸,經迴歸分析求得標準檢量線:y=a+bx, $a \times b$ 為 常數。

2.7 檢液之配製:


將檢體充分混合後,分別秤取 3 重複約含平硫瑞 50±5 mg (記錄至 0.1 mg) 之樣品,置於 50 mL 定量瓶中,先加入 5 mL 去離子水搖勻後,加入 40 mL 氰甲烷,以超音波振盪 10 分鐘,回至室溫,以氰甲烷定容至刻度,混合均勻,再取此氰甲烷溶液 3.0 mL 置於 10 mL 定量瓶,加入 1.0 mL 貯存內標準液,混合均勻,以氰甲烷定容至刻度 (最後約含 300 μg/mL 平硫瑞及 50 μg/mL 內標準參考物質),並以 0.22 μm 親水性聚丙烯過濾膜過濾之,作為檢液。

- 2.8 鑑別試驗及含量測定:
 - 2.8.1 儀器操作條件:
 - 2.8.1.1 動相: 氰甲烷:甲醇:水 = 40:20:40, (v/v/v)。
 - 2.8.1.2 流速: 1.0 mL/min
 - 2.8.1.3 波長: 250nm。
 - 2.8.1.4 注入量:10 uL。
 - 2.8.1.5 分析溫度:室溫。
 - 2.8.2 取操作標準液及檢液各 10 μL,分別注入高效液相層析儀,就操作標準液與檢液所得尖峰之滯留時間比較鑑別之,由標準檢量線計算檢液濃度:x= y-a,

式中 x 為檢液之濃度,

並依下式計算其含量: 有效成分 (%, w/w)

2.9 圖譜:

五、參考文獻:

- 1.BCPC Online Pesticide Manual.
 - http://pmonline.azurewebsites.net/_Main/Pesticide.aspx (頻取日期: 2022/03/17)
- 2.Tomoaki Yoshida. 2016. Quality Control Data of Penthiopyrad 20%SC.MITSUI CHEMICAL AGRO, INC. 6 pp.

六、品質管制:

- 1.所有品質管制數據,均需保存以便參考及檢查。
- 2.配製貯存標準液 (STDA) 及貯存查核標準液 (STDB) 之參考物質,其秤取量應為 25±5 mg,且二者之相差應不大於 0.2 mg,若有不同來源或相同來源不同批號之參 考物質,應使用於查核標準液之配製。
- 3.系統平衡測試:重複連續注入操作標準液 (STD A-3),其連續 2 次注入所得之感應因子比值,皆應介於 99~101% 之間。(感應因子 = 尖峰面積比 / 濃度比)
- 4.標準液查核:注入查核標準液 (STD B-3),其與系統平衡測試操作標準液(STD A-3) 注入 1 所得之感應因子比值,應介於 98~102% 之間。
- 5. 感應因子比值管制:
 - 5.1 操作標準液 (STD A-3)注入所得之感應因子與系統平衡測試操作標準液 (STD A-3) 注入 1 之比值應介於 99~101% 之間,若超出範圍,則應重新注入分析。
 - 5.2 查核標準液 (STD B-3)注入所得之感應因子與系統平衡測試操作標準液 (STD A-3) 注入1之比值應介於98~102%之間,若超出範圍,則應重新注入分析。
- 6. 貯存標準液與標準檢量線於每次同批檢驗時,新鮮配製,且不可使用超過3日。
- 7.檢量線之線性相關係數平方值 r² 需達 0.999 或以上。
- 8.檢量線查核:每注入3個檢液後,須注入查核標準液 (STDB-3) 查核檢量線,依所 得之參考物質與內標準參考物質尖峰面積比代入檢量線計算標準液濃度,其與配製 濃度之查核比值應介於 98~102% 之間,若超出範圍,則應重新配製標準液並製備 檢量線。
- 9.內標準液面積查核:所有添加內標準液之注入分析(除貯存內標準液外),其內標準 液面積與系統平衡測試第1重複注入內標準液面積之比值應介於98~102%之間。
- 10.滞留時間管制:注入之操作標準液、查核標準液及檢液,其參考物質及內標準參考物質尖峰滯留時間分別與進行系統平衡測試注入 1 之參考物質及內標準參考物質 尖峰滯留時間相較,其比值應介於 98~102% 之間。
- 11.每個樣品應取樣 3 重複,其分析結果相對標準差 (RSD,即 coefficient of variance)

應小於依 CIPAC 農藥成品分析方法確認指南中 Horwitz 方程式計算之可接受 RSDr 值。例如:依 Horwitz 方程式 $(RSD_R=2^{(1-0.5logC)},RSDr=RSD_R\times0.67)$,20%有效成分含量之樣品可接受 RSDr 值,計算如下:

C = 0.20

 $RSD_R = 2^{(1\text{-}0.5\log 0.2)} = 2.55$

 $RSDr = 2.55 \times 0.67 = 1.71$

- 12.若有查核樣品應於有效成分檢驗後重複注入分析 2 次,並注入查核標準液(STD B-3) 查核檢量線,其管制依 8.規定。
- 13.由樣品分析結果之層析圖研判,或對分析有效成分有懷疑時,應以添加試驗、變 更層析條件或其他鑑定方法加以確認。